A novel route for the preparation of dimeric tetraorganodistannoxanes

Jens Beckmann ${ }^{\text {a }}$, Dainis Dakternieks ${ }^{\text {a,* }}$, Fong Sheen Kuan ${ }^{\text {a }}$, Edward R.T. Tiekink ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Centre for Chiral and Molecular Technologies, Deakin University, Geelong, Vic. 3217, Australia
${ }^{\mathrm{b}}$ Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia

Received 30 May 2002; received in revised form 1 July 2002; accepted 1 July 2002

Abstract

The reaction of polymeric diorganotin oxides, $\left(\mathrm{R}_{2} \mathrm{SnO}\right){ }_{n}(\mathrm{R}=\mathrm{Me}$, $\mathrm{Et}, n-\mathrm{Bu}, n-\mathrm{Oct}, c-\mathrm{Hex}, i-\mathrm{Pr}, \mathrm{Ph})$, with saturated aqueous $\mathrm{NH}_{4} \mathrm{X}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{OAc})$ in refluxing 1,4-dioxane afforded in high yields dimeric tetraorganodistannoxanes, $\left[\mathrm{R}_{2}(\mathrm{X}) \mathrm{SnOSn}(\mathrm{X}) \mathrm{R}_{2}\right]_{2}$, and in a few cases diorganotin dihalides or diacetates, $\mathrm{R}_{2} \mathrm{SnX} \mathrm{X}_{2}$. The reported method appears suitable for the synthesis of fluorinated tetraorganodistannoxanes. Identification of $\left[\mathrm{R}_{2}(\mathrm{OH}) \operatorname{SnOSn}(\mathrm{X}) \mathrm{R}_{2}\right]_{2}(\mathrm{R}=n-\mathrm{Bu} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ and $\left[\mathrm{R}_{2}(\mathrm{OH}) \operatorname{SnOSn}(\mathrm{X}) \mathrm{R}_{2}\right]\left[\mathrm{R}_{2}(\mathrm{X}) \operatorname{SnOSn}(\mathrm{X}) \mathrm{R}_{2}\right]$ suggest a serial substitution mechanism starting from $\left[\mathrm{R}_{2}(\mathrm{OH}) \mathrm{SnOSn}(\mathrm{OH}) \mathrm{R}_{2}\right]_{2}$. X-ray crystal structure determinations are reported for $\left[\mathrm{Me}_{2}(\mathrm{AcO}) \mathrm{SnOSn}(\mathrm{OAc}) \mathrm{Me}_{2}\right]_{2}(\mathbf{2 9 a}),\left[i-\mathrm{Pr}_{2}(\mathrm{Br}) \mathrm{SnOSn}(\mathrm{Br}) i-\mathrm{Pr}_{2}\right]_{2}$ (20a), $[c$ $\left.\mathrm{Hex}_{2}(\mathrm{~F}) \mathrm{SnOSn}(\mathrm{F}) c-\mathrm{Hex}_{2}\right]_{2}$ (5a) and $\left[c-\mathrm{Hex}_{2}(\mathrm{~F}) \mathrm{SnOSn}(\mathrm{Cl}) c-\mathrm{Hex}_{2}\right]_{2}$ (36), respectively. These show the presence of a central $\left(\mathrm{R}_{2} \mathrm{Sn}\right)_{2} \mathrm{O}_{2}$ core that is connected, via the oxygen atoms, to $\mathrm{R}_{2} \mathrm{Sn}$ entities. Acetate (29a) or halides (5a, 20a, 36) complete the coordination about the tin centres. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Tin; Tetraorganodistannoxane; ${ }^{119} \mathrm{Sn}-\mathrm{NMR}$ spectroscopy; X-ray crystallography

1. Introduction

Tetraorganodistannoxanes with dimeric ladders structures $\left[\mathrm{R}_{2}(\mathrm{X}) \operatorname{SnOSn}(\mathrm{Y}) \mathrm{R}_{2}^{\prime}\right]_{2}\left(\mathrm{R}, \mathrm{R}^{\prime}=\right.$ alkyl or aryl; $\mathrm{X}=$ $\mathrm{Y}=\mathrm{Hal}, \mathrm{OH}, \mathrm{OR}, \mathrm{OSiMe}_{3}, \mathrm{OOCR}, \mathrm{OSP}(\mathrm{OR})_{2}, \mathrm{NO}_{3}$, $\mathrm{N}_{3}, \mathrm{NCS}, \mathrm{SH}, \mathrm{OReO}_{3}, \mathrm{NCO}, \mathrm{OB}(\mathrm{OR})_{2}, \mathrm{ROO}, \mathrm{RSO}_{3}$, RS), have been widely exploited over recent years owing to their unique structural features (Scheme 1) [1-10]. They are also of interest as highly selective, homogeneous catalysts in various organic reactions such as transesterification, acylation of alcohols, urethane formation and alkyl carbonate synthesis [11-24]. More recently dimeric tetraorganodistannoxanes bearing perfluorinated substituents were used as catalysts in three liquid phase systems involving fluorinated solvents [25].

In the past, dimeric tetraorganodistannoxanes with X , $\mathrm{Y}=\mathrm{Hal}, \mathrm{OH}$ have been prepared by the partial hydrolysis of diorganotin dihalides. However, this method is

[^0]not always straightforward and requires specific conditions for each product, which are for new systems unpredictable [5,26-32]. A more general approach for the synthesis of derivatives with $\mathrm{X}=\mathrm{Y}=\mathrm{Hal}$ is from a reaction between equimolar amounts of diorganotin oxide and diorganotin dihalide. A shortcoming of this method is the requirement that the diorganotin oxide must be sufficiently soluble in organic solvents [33,34]. Furthermore, this method fails to provide fluorinated tetraorganodistannoxanes, due to the insolubility of diorganotin difluorides. Consequently, only very few examples have been reported so far [35].

Earlier work showed that reaction between diorganotin oxides and ammonium halides in methylcyclohexane at reflux resulted in formation of diorganotin dihalides [36].

In the present work, we report a new and facile way of generating dimeric tetraorganodistannoxanes with $\mathrm{X}=$ $\mathrm{Y}=$ halogen using $\left(\mathrm{R}_{2} \mathrm{SnO}\right)_{n}(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, n$ - Bu, n-Oct, $c-\mathrm{Hex}, i-\mathrm{Pr}, \mathrm{Ph})$ and a biphasic solvent mixture consisting of saturated aqueous $\mathrm{NH}_{4} \mathrm{X}$ solution $(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, I, OAc) and 1,4-dioxane. Thus, we have been able to generate a number of already reported as well as some

$R=$ alkyl, aryl; $X, Y=$ Hal, OH, OR, OSiMe ${ }_{3}, \mathrm{OOCR}, \operatorname{OSP}(O R)_{2}$, $\mathrm{NO}_{3}, \mathrm{~N}_{3}, \mathrm{NCS}, \mathrm{SH}, \mathrm{OReO}_{3}, \mathrm{NCO}, \mathrm{OB}(\mathrm{OR})_{2}, \mathrm{ROO}, \mathrm{RSO}_{3}, \mathrm{RS}$

Scheme 1.
hitherto unknown dimeric tetraorganodistannoxanes. Compounds were characterised by ${ }^{119} \mathrm{Sn}-\mathrm{NMR}$ spectroscopy in solution and in the solid state and in some representative cases by X-ray crystallography.

2. Results and discussion

2.1. Synthetic aspects

The reaction of the diorganotin oxides, $\left(\mathrm{R}_{2} \mathrm{SnO}\right)_{n}$ $(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, n$-Bu, n-Oct, c-Hex, i - Pr, Ph), with aqueous $\mathrm{NH}_{4} \mathrm{X}(\mathrm{X}=\mathrm{Hal}, \mathrm{OAc})$ was performed in refluxing dioxane (Eq. (1)). The reactions were usually complete when all of the polymeric diorganotin oxide had dissolved ($12-96 \mathrm{~h}$). In most cases pure dimeric tetraorganodistannoxane, $\left[\mathrm{R}_{2}(\mathrm{X}) \mathrm{SnOSn}(\mathrm{X}) \mathrm{R}_{2}\right]_{2}$ (hereafter denoted with ' a ') were obtained after standard work-up and in few cases diorganotin dihalides or diacetates, $\mathrm{R}_{2} \mathrm{SnX}_{2}$ (hereafter denoted with ' b '), were obtained in good to high yields. Detailed results are presented in Table 1 and are discussed below.

$$
\begin{align*}
\left(\mathrm{R}_{2} \mathrm{SnO}\right)_{n}+\mathrm{NH}_{4} \mathrm{X} & \xrightarrow[\text { reflux, 12-96 h }]{\text { 1,4-dioxane }}\left[\mathrm{R}_{2}(\mathrm{X}) \mathrm{SnOSn}(\mathrm{X}) \mathrm{R}_{2}\right]_{2} \tag{1}
\end{align*}+\underset{\mathrm{R}_{2} \mathrm{SnX}_{2}}{\text { a }} \text { b }
$$

2.1.1. Reactions of $\left(R_{2} \mathrm{SnO}\right)_{n}$ with $\mathrm{NH}_{4} F$

The reaction of $\left(\mathrm{R}_{2} \mathrm{SnO}\right)_{n}$ with $\mathrm{NH}_{4} \mathrm{~F}$ afforded dimeric tetraorganodistannoxanes $\left[\mathrm{R}_{2}(\mathrm{~F}) \mathrm{SnOSn}(\mathrm{F}) \mathrm{R}_{2}\right]_{2}$ ($\mathrm{R}=n-\mathrm{Bu}$ (3a) [37], c-Hex (5a)). However, for $\mathrm{R}=\mathrm{Me}$, $\mathrm{Et}, n-\mathrm{Oct}, i-\mathrm{Pr}$ and Ph only inseparable mixtures were obtained. Moreover, for $\mathrm{R}=\mathrm{Me}$, Et and Ph the low yield of these mixtures suggests that substantial amounts of organotin species were not extracted from the aqueous layers. This observation might be tentatively attributed to the formation of charged organotin species, such as $\left[\mathrm{R}_{2} \mathrm{SnF}_{3}\right]^{-},\left[\left(\mathrm{R}_{2} \mathrm{SnF}_{2}\right)_{2} \mathrm{~F}\right]^{-}$and $\left[\mathrm{R}_{2} \mathrm{SnF}_{4}\right]^{2-}[38,39]$. For $\mathrm{R}=n$-Oct and i-Pr the ${ }^{119} \mathrm{Sn}-$ NMR spectra of the crude mixtures revealed 12 and 17 signals, respectively, in the region between -15 and -190 ppm.

In CDCl_{3} solution, $\left[n-\mathrm{Bu}_{2}(\mathrm{~F}) \mathrm{SnOSn}(\mathrm{F}) n-\mathrm{Bu}_{2}\right]_{2}$ (3a) and $\left[c-\mathrm{Hex}_{2}(\mathrm{~F}) \mathrm{SnOSn}(\mathrm{F}) c-\mathrm{Hex}_{2}\right]_{2}$ (5a) are unambiguously characterised by ${ }^{119} \mathrm{Sn}$-NMR spectroscopy, which
reveals for each compound two triplets centred at $-142.2\left({ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=771 \mathrm{~Hz}\right)$ and -159.4 ppm $\left({ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=1795 \mathrm{~Hz}\right)$ for $\mathbf{3 a}$ and at -237.6 $\left({ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=1950 \mathrm{~Hz}\right) \quad$ and $-212.0 \quad \mathrm{ppm}$ $\left({ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=783 \mathrm{~Hz}\right)$ for $5 \mathbf{5 a}$. The observation of well-resolved triplets for 3a contradicts the results of Jain et al. who reported a broad signal at -156 ppm for this compound [37].

2.1.2. Reactions of $\left(\mathrm{R}_{2} \mathrm{SnO}\right){ }_{n}$ with $\mathrm{NH}_{4} \mathrm{Cl}$

The reaction of $\left(\mathrm{R}_{2} \mathrm{SnO}\right)_{n}$ with $\mathrm{NH}_{4} \mathrm{Cl}$ provided dimeric tetraorganodistannoxanes $\quad\left[\mathrm{R}_{2}(\mathrm{Cl}) \mathrm{SnOSn}-\right.$ $\left.(\mathrm{Cl}) \mathrm{R}_{2}\right]_{2}(\mathrm{R}=\mathrm{Me}(8 \mathbf{a})$ [4], $\mathrm{Et}(9 \mathbf{a})$ [4], $n-\mathrm{Bu}$ (10a) [4], n-Oct (11a), c-Hex (12a)) and diorganotin dichlorides $\mathrm{R}_{2} \mathrm{SnCl}_{2}(\mathrm{R}=i-\operatorname{Pr}$ (13b) [40], $\mathrm{Ph}(\mathbf{1 4 b})$ [41]), respectively. In view of the fact that c-Hex groups are bulkier than Ph groups, the formation of $\mathbf{1 2 a}$ and $\mathbf{1 4 b}$ suggests that not only the steric demand of the substituents, but also the group electronegativities of the substituents determines the favoured product of the reactions.

The course of reaction between $\left(n-\mathrm{Bu}_{2} \mathrm{SnO}\right)_{n}$ and $\mathrm{NH}_{4} \mathrm{Cl}$ was monitored using ${ }^{119} \mathrm{Sn}$-NMR spectroscopy. A representative sample was taken after 24 h (total reaction time 48 h$)$, the ${ }^{119} \mathrm{Sn}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of which revealed eight signals between -80 and -190 ppm (Fig. 1). The connectivity of these signals was established by 1D and 2D INADEQUATE ${ }^{119} \mathrm{Sn}-\mathrm{NMR}$ spectroscopy. Accordingly, the signals were unambiguously assigned to $\left[n-\mathrm{Bu}_{2}(\mathrm{OH}) \mathrm{SnOSn}(\mathrm{Cl}) n-\mathrm{Bu}_{2}\right]_{2}(\mathbf{1 0 d}, \delta$ $\left({ }^{119} \mathrm{Sn}\right):-138.8,-159.8$; total integral 12\%) [42], [$n-$ $\left.\mathrm{Bu}_{2}(\mathrm{OH}) \mathrm{SnOSn}(\mathrm{Cl}) n-\mathrm{Bu}_{2}\right]\left[n-\mathrm{Bu}_{2}(\mathrm{Cl}) \mathrm{SnOSn}(\mathrm{Cl}) n-\mathrm{Bu}_{2}\right]$ $\left(10 \mathbf{c}, \delta\left({ }^{119} \mathrm{Sn}\right):-93.4,-125.6,-132.2,-175.2\right.$; total integral 61%), and $\left[n-\mathrm{Bu}_{2}(\mathrm{Cl}) \operatorname{SnOSn}(\mathrm{Cl}) n-\mathrm{Bu}_{2}\right]_{2}(\mathbf{1 0 a}, \delta$ $\left({ }^{119} \mathrm{Sn}\right):-90.7,-139.1$; total integral 27%) [42]. The coexistence of the latter three tetraorganodistannoxanes demonstrates that the redistribution reaction between these species is slow on the ${ }^{119} \mathrm{Sn}-\mathrm{NMR}$ time scale [43]. It also suggests that the reaction mechanism appears to involve the initial formation of tetrahydroxide species $\left[n-\mathrm{Bu}_{2}(\mathrm{OH}) \mathrm{SnOSn}(\mathrm{OH}) n-\mathrm{Bu}_{2}\right]_{2}$ from which hydroxides are replaced in a stepwise fashion by chlorides.

2.1.3. Reactions of $\left(R_{2} \mathrm{SnO}\right)_{n}$ with $\mathrm{NH}_{4} \mathrm{Br}$

The reaction of $\left(\mathrm{R}_{2} \mathrm{SnO}\right)_{n}$ with $\mathrm{NH}_{4} \mathrm{Br}$ produced tetraorganodistannoxanes $\left[\mathrm{R}_{2}(\mathrm{Br}) \mathrm{SnOSn}(\mathrm{Br}) \mathrm{R}_{2}\right]_{2}(\mathrm{R}=$ Et (16a) [3], n-Bu (17a) [3], n-Oct (18a), i-Pr (20a)) and diorganotin dibromides $\mathrm{R}_{2} \mathrm{SnBr}_{2}(\mathrm{R}=c$ - $\mathrm{Hex}(19 \mathrm{~b})$ [44], Ph (21b) [41]), respectively. The reaction of $\left(\mathrm{Me}_{2} \mathrm{SnO}\right)_{n}$ with $\mathrm{NH}_{4} \mathrm{Br}$ provided a mixture of unknown products, which could not be separated. The ${ }^{119} \mathrm{Sn}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of this mixture revealed 12 signals between -131.5 and -153.5 ppm , which were tentatively assigned to pentacoordinate tin atoms.

The course of reaction between $\left(n-\mathrm{Bu}_{2} \mathrm{SnO}\right)_{n}$ and $\mathrm{NH}_{4} \mathrm{Br}$ was also monitored using ${ }^{119} \mathrm{Sn}$-NMR spectroscopy. A representative sample was taken after 24 h

Table 1
Details for the preparation of dimeric tetraorganodistannoxanes ('a') and diorganotin dihalides or diacetates ('b')

Entry	$\mathrm{NH}_{4} \mathrm{X}$	$\left(\mathrm{R}_{2} \mathrm{SnO}\right)_{n}$	Time (h)	Product(s)	Yield (\%)	Melting point (${ }^{\circ} \mathrm{C}$)	$\delta\left({ }^{119} \mathrm{Sn}\right)(\mathrm{ppm})$
1	F	Me	48	Complex mixture ${ }^{\text {a }}$.		
2		Et	24	Complex mixture ${ }^{\text {b }}$			
3		n-Bu	48	3a	75	115-117	-142.2, -159.4
4		n-Oct	48	Complex mixture ${ }^{\text {c }}$			
5		c-Hex	48	5a	86	> 295 (dec.)	-212.0, -237.6
6		i-Pr	20	Complex mixture ${ }^{\text {d }}$			
7		Ph	12	Complex mixture ${ }^{\text {e }}$		>310 (dec.)	
8	Cl	Me	48	8 a	82	> 280	-62.6, -114.4
9		Et	24	9a	60	168-170	$-89.1,-137.6^{\mathrm{g}}$
10		n-Bu	48	10a	96	110-111	-91.4, -140.3
11		n-Oct	48	11a	92	94-95	-90.8, - 138.2
12		c-Hex	24	12a	84	>250 (dec.)	-139.0, -202.7
13		i - Pr	20	13b	92	80-84	83.5
14		Ph	12	14b	95	41-42	-53.5
15	Br	Me	48	Complex mixture ${ }^{\text {f }}$		74-76	
16		Et	24	16a	60	176-178	$-79.3,-128.9{ }^{\text {h }}$
17		n-Bu	48	17a	95	103-104	-81.3, -129.8
18		n-Oct	48	18a	90	63-64	-82.0, - 130.1
19		c-Hex	24	19b	90	58-59	62.3
20		i - Pr	24	20a	80	> 270 (dec.)	-91.9, - 144.0
21		Ph	12	21b	92	110-114	-81.8
22	I	Me	48	22b	62	41-43	-159
23		Et	24	Complex mixture ${ }^{\text {i }}$			
24		n-Bu	60	24a	60	120-125	-169.7, -173.9
25		n-Oct	48	25a	80	90-95	-169.9, - 174.6
26		c-Hex	24	26 b	80	Oil	2.9
27		i-Pr	20	27b	90	Oil	31.5
28		Ph	12	28b	85	71-72	-243.1
29	OAc	Me	48	29a	76	206-210	-171.4, - 184.6
30		Et	24	30b	90	41-43	-171.0
31		n-Bu	48	31a/31b (52:48)			-205.9, -220.6/-156.3
32		n-Oct	48	32b	80		-206.6, -221.3/-151.1
33		c-Hex	24	33b ${ }^{\text {j }}$	91	50-54	-215.3
34		$i-\mathrm{Pr}$	20	34b	89	38-42	-205.9
35		Ph	24	35b	92	120-130	-116.1

[^1](total reaction time 48 h), the ${ }^{119} \mathrm{Sn}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ of which revealed eight signals between -80 and -181 ppm . The signals were unambiguously assigned to $\left[n-\mathrm{Bu}_{2}(\mathrm{OH}) \mathrm{SnOSn}(\mathrm{Br}) n-\mathrm{Bu}_{2}\right]_{2} \quad(17 \mathrm{~d}, \quad \delta$ (${ }^{119} \mathrm{Sn}$): - 161.0, -174.5 ; total integral 22\%) [42], [$n-$ $\left.\mathrm{Bu}_{2}(\mathrm{OH}) \mathrm{SnOSn}(\mathrm{Br}) n-\mathrm{Bu}_{2}\right]\left[n-\mathrm{Bu}_{2}(\mathrm{Br}) \mathrm{SnOSn}(\mathrm{Br}) n-\mathrm{Bu}_{2}\right]$ $\left(17 \mathrm{c}, \delta\left({ }^{119} \mathrm{Sn}\right):-79.8,-120.9,-154.6,-181.4\right.$; total integral 35%), and $\left[n-\mathrm{Bu}_{2}(\mathrm{Br}) \mathrm{SnOSn}(\mathrm{Br}) n-\mathrm{Bu}_{2}\right]_{2}(\mathbf{1 7 a}, \delta$ $\left({ }^{119} \mathrm{Sn}\right):-81.3,-129.8$; total integral 43%) [42]. These results also suggest that the reaction mechanism appears to involve the initial formation of tetrahydroxide species
$\left[n-\mathrm{Bu}_{2}(\mathrm{OH}) \mathrm{SnOSn}(\mathrm{OH}) n-\mathrm{Bu}_{2}\right]_{2}$ from which hydroxides are replaced in a stepwise fashion by bromides.

2.1.4. Reactions of $\left(\mathrm{R}_{2} \mathrm{SnO}\right)_{n}$ with $\mathrm{NH}_{4} I$

The reaction of $\left(\mathrm{R}_{2} \mathrm{SnO}\right)_{n}$ with $\mathrm{NH}_{4} \mathrm{I}$ afforded only dimeric tetraorganodistannoxanes ' a ' for $\mathrm{R}=n-\mathrm{Bu}$ (24a) and n-Oct (25a), whereas diorganotin diiodides ' b ' were isolated for $\mathrm{R}=\mathrm{Me}$ (22b), c - Hex (26b), i - Pr (27b) and Ph (28b). In the case of $\mathrm{R}=\mathrm{Et}$, only a complex mixture was obtained, which could not be

Fig. 1. ${ }^{119} \mathrm{Sn}-\mathrm{NMR}$ spectrum $\left(\mathrm{CDCl}_{3}\right)$ from the reaction of $\left(n-\mathrm{Bu}_{2} \mathrm{SnO}\right)_{n}$ with $\mathrm{NH}_{4} \mathrm{Cl}$ after 12 h . Signals denoted with '10a', '10c' and '10d' were assigned to $\left[n-\mathrm{Bu}_{2}(\mathrm{Cl}) \mathrm{SnOSn}(\mathrm{Cl}) n-\mathrm{Bu}_{2}\right]_{2},\left[n-\mathrm{Bu}_{2}(\mathrm{OH}) \operatorname{SnOSn}(\mathrm{Cl}) n-\mathrm{Bu}_{2}\right]\left[n-\mathrm{Bu}_{2}(\mathrm{Cl}) \mathrm{SnOSn}(\mathrm{Cl}) n-\mathrm{Bu}_{2}\right]$ and $[n-\mathrm{Bu},(\mathrm{OH}) \mathrm{SnOSn}(\mathrm{Cl}) n-\mathrm{Bu}]_{2}$, respectively.
separated. The ${ }^{119} \mathrm{Sn}$-NMR spectrum of this mixture revealed seven signals between -30 and -200 ppm .

2.1.5. Reactions of $\left(\mathrm{R}_{2} \mathrm{SnO}\right)_{n}$ with $\mathrm{NH}_{4} \mathrm{OAc}$

The reaction of $\left(\mathrm{R}_{2} \mathrm{SnO}\right)_{n}$ with $\mathrm{NH}_{4} \mathrm{OAc}$ afforded only one dimeric tetraorganodistannoxane, namely, $\left[\mathrm{Me}_{2}(\mathrm{AcO}) \mathrm{SnOSn}(\mathrm{OAc}) \mathrm{Me}_{2}\right]_{2}$ (29a), and on almost all other occasions, diorganotin diacetates, $\mathrm{R}_{2} \mathrm{Sn}(\mathrm{OAc})_{2}$ ($\mathrm{R}=\mathrm{Et}(\mathbf{3 0 b}$), n-Oct (32b), c-Hex (33b), i - Pr (34b) and $\mathrm{Ph}(\mathbf{3 5 b})$). For $\left(n-\mathrm{Bu}_{2} \mathrm{SnO}\right)_{n}$, a mixture of $\left[n-\mathrm{Bu}_{2}(\mathrm{~A}-\right.$ $\left.\mathrm{cO}) \mathrm{SnOSn}(\mathrm{OAc}) n-\mathrm{Bu}_{2}\right]_{2} \quad\left(31 \mathrm{a} ; \quad \delta \quad\left({ }^{119} \mathrm{Sn}\right): \quad-205.9\right.$, -220.6; total integral 52\%) [42] and $n-\mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{OAc})_{2}$ (31b; $\delta\left({ }^{119} \mathrm{Sn}\right)$: -156.3 ; total integral 48%) was obtained. It is worth mentioning that $c-\mathrm{Hex}_{2} \mathrm{Sn}(\mathrm{OAc})_{2}$ (33b) was isolated as its water adduct $c-\mathrm{Hex}_{2} \mathrm{Sn}(\mathrm{OAc})_{2}$. $\mathrm{H}_{2} \mathrm{O}$, the molecular structure of which has been published elsewhere [45]. The coordination number of tin in $c-\mathrm{Hex}_{2} \mathrm{Sn}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ is seven, which is also reflected in the ${ }^{119} \mathrm{Sn}$-MAS-NMR resonance being observed at -401.8 ppm . The ${ }^{119} \mathrm{Sn}-\mathrm{NMR}$ spectrum of the $c-\mathrm{Hex}_{2} \mathrm{Sn}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in CDCl_{3} shows a signal at -215.3 ppm , consistent with pentacoordinate tin atoms and, indicating dissociation of the water.

2.1.6. Synthesis of $\left[c-\mathrm{Hex}_{2}(F) \mathrm{SnOSn}(\mathrm{Cl}) \mathrm{c}-\mathrm{Hex}_{2}\right]_{2}$

 (36)Recently, redistribution reactions were described between two symmetric dimeric tetraorganodistannoxanes, $\left[\mathrm{R}_{2}(\mathrm{X}) \mathrm{SnOSn}(\mathrm{X}) \mathrm{R}_{2}\right]_{2}$ and $\left[\mathrm{R}_{2}(\mathrm{Y}) \mathrm{SnOSn}(\mathrm{Y}) \mathrm{R}_{2}\right]_{2}$ [43,37,46,47]. In the example where X and Y represent a combination of a strong and a weak donor, e.g. $\mathrm{X}=\mathrm{F}$, $\mathrm{Y}=\mathrm{Cl}$ or $\mathrm{X}=\mathrm{OH}, \mathrm{Y}=\mathrm{Cl}$, these reactions quantitatively provide unsymmetric dimeric tetraorganodistannoxanes, $\left[\mathrm{R}_{2}(\mathrm{X}) \mathrm{SnOSn}(\mathrm{Y}) \mathrm{R}_{2}\right]_{2}$, whereas equilibria were observed when X and Y both comprise weak donors, e.g. $\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{Br}$. In order to prepare a rare example [37] of dimeric tetraorganodistannoxane containing F and Cl atoms, $\left[c-\mathrm{Hex}_{2}(\mathrm{~F}) \mathrm{SnOSn}(\mathrm{F}) c-\mathrm{Hex}_{2}\right]_{2}(5 a)$ and $[c-$ $\left.\mathrm{Hex}_{2}(\mathrm{Cl}) \mathrm{SnOSn}(\mathrm{Cl}) c-\mathrm{Hex}_{2}\right]_{2}(\mathbf{1 2 a})$ were reacted providing $\left[c-\mathrm{Hex}_{2}(\mathrm{~F}) \mathrm{SnOSn}(\mathrm{Cl}) c-\mathrm{Hex}_{2}\right]_{2}(36)$ in almost quantitative yields (Eq. (2)).

Compound (36) is colourless, high-melting solid, which is poorly soluble in common organic solvents. However, it was possible to obtain a ${ }^{119} \mathrm{Sn}$-NMR spectrum (d_{8}-toluene) at $100{ }^{\circ} \mathrm{C}$ that displays a doublet
and a doublet of doublets centred at -175.3 ppm $\left({ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=1240 \mathrm{~Hz} ;{ }^{2} J\left({ }^{119} \mathrm{Sn}-\mathrm{O}-{ }^{117 / 119} \mathrm{Sn}\right)=220\right.$ $\mathrm{Hz})$ and $-226.1 \quad$ ppm $\quad\left({ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=1540 \mathrm{~Hz}\right.$; ${ }^{2} J\left({ }^{119} \mathrm{Sn}-\mathrm{O}-{ }^{117 / 119} \mathrm{Sn}\right)=221 / 217 \quad \mathrm{~Hz} ; \quad{ }^{3} J\left({ }^{119} \mathrm{Sn}-\right.$ $\left.\mathrm{OSn}-{ }^{19} \mathrm{~F}\right)=32 \mathrm{~Hz}$) of equal intensity (total integral 80%). Additionally, the spectrum shows 15 low intensity signals between -135 and -247 ppm (total integral 20%), which, appear to be systematically related to 36 [48]. No definitive assignment of these signals could be made. The ${ }^{19} \mathrm{~F}$-NMR spectrum of 36 (d_{8}-toluene, r.t.) reveals one major signal at -124.1 ppm $\left({ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{117 / 119} \mathrm{Sn}\right)=1220 \mathrm{~Hz} ;{ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{117 / 119} \mathrm{Sn}\right)=1489\right.$ Hz) and two minor signals at -123.2 and 123.5 ppm , respectively. The ${ }^{119} \mathrm{Sn}-\mathrm{MAS}-\mathrm{NMR}$ spectrum of $\mathbf{3 6}$ shows three signals at $-183.0\left({ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=1150\right.$ $\mathrm{Hz}),-226.0\left({ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=1550 \mathrm{~Hz}\right)$ and -234.0 $\operatorname{ppm}\left({ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=1630 \mathrm{~Hz}\right)$ with a total manifold integration of $2: 1: 1$. The number of signals is consistent with the existence of a non-symmetric tetrameric unit or two independent molecules in the crystallographic unit cell, each situated about a centre. The crystallographic study provides evidence for this (see below).

2.2. Molecular structures of dimeric

 tetraorganodistannoxanes 29a, 20a, 5a, 36The molecular structures of 29a, 20a, 5a and 36 are shown in Figs. 2-5, respectively, and selected bond lengths and angles are listed in Tables 2 and 3. The molecular structure of 29 a represents a second polymorph of the compound with the monoclinic polymorph also crystallising in a non-centrosymmetric space group $P a$ (see Section 3) [49]. Of the structures with the general formula $\left\{\left[\mathrm{R}_{2} \mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CR}^{\prime}\right)\right]_{2} \mathrm{O}\right\}_{2}$ (29a), i.e. with $\mathrm{R}=\mathrm{R}^{\prime}=$

Fig. 2. Molecular structure and crystallographic numbering scheme employed for compound 29a.

Fig. 3. Molecular structure and crystallographic numbering scheme employed for compound 20a.

Fig. 4. Molecular structure and crystallographic numbering scheme employed for compound 5a.

Me , is an atypical structure, being the sole example of one of five motifs known for compounds of this type $[50,51]$. The structure is constructed about a central $\left(\mathrm{Me}_{2} \mathrm{Sn}\right)_{2} \mathrm{O}_{2}$ core to which is linked, via the oxygen atoms, two $\mathrm{Me}_{2} \mathrm{Sn}$ entities. Further links between the endo-cyclic $\operatorname{Sn}(1)$ and $\operatorname{Sn}(2)$ atoms, and exo-cyclic $\operatorname{Sn}(3)$ and $\operatorname{Sn}(4)$ atoms, with the exception of the $\operatorname{Sn}(1)$ and $\operatorname{Sn}(4)$ pair, are afforded by bidentate bridging acetate groups that form essentially symmetric $\mathrm{Sn}-\mathrm{O}$ bonds. The coordination geometry about the $\operatorname{Sn}(4)$ atom is

Fig. 5. Molecular structure and crystallographic numbering scheme employed for one of the two independent molecules of compound $\mathbf{3 6}$.
completed by a monodentate acetate ligand. Bridges between neighbouring tetrameric units are present so that the $\mathrm{O}(10)$ atom forms an interaction with a symmetry related $\mathrm{Sn}(3)$ atom (symmetry operation: $1-x, 1-y, 1 / 2+z)$. The $\operatorname{Sn}(3)-\mathrm{O}(10)$ distance of $2.523(12) \AA$ is not so much longer than the other $\mathrm{Sn}-$ $\mathrm{O}_{\text {acetate }}$ bond distances, which lie in the range 2.212(9)$2.329(13) \AA$, and hence, the structure is properly described as polymeric with the chain extending along the crystallographic z-axis. The $\operatorname{Sn}(1)$ and $\operatorname{Sn}(4)$ atom exist in distorted trigonal-bipyramidal geometries with the $\mathrm{O}(1)$ and $\mathrm{O}(3)$, and $\mathrm{O}(1)$ and $\mathrm{O}(5)$ atoms defining the axial positions, respectively. A close intramolecular contact between the $\mathrm{Sn}(1)$ and $\mathrm{O}(9)$ atoms of 2.904(11) \AA is not considered to represent a significant bonding interaction between these atoms but may be responsible for the expansion of the $C(9)-\operatorname{Sn}(1)-C(10)$ angle to $141.8(5)^{\circ}$. Similarly, a close contact between the $\mathrm{Sn}(4)$ and $\mathrm{O}(10)$ atoms of $2.881(11) \AA$ is noted which is also probably responsible for the widening of the $\mathrm{C}(15)$ -$\operatorname{Sn}(4)-\mathrm{C}(16)$ angle to $140.8(8)^{\circ}$. By contrast to the trigonal-bipyramidal geometries found for $\operatorname{Sn}(1)$ and $\mathrm{Sn}(4)$, a skew-trapezoidal-bipyramidal geometry, defined by a $\mathrm{C}_{2} \mathrm{O}_{4}$ donor set, is the best description for the coordination geometry for the $\operatorname{Sn}(2)$ atom where the methyl groups lie over the weaker $\mathrm{Sn}(2)-\mathrm{O}(5), \mathrm{O}(7)$ bonds. $\mathrm{A}_{2} \mathrm{O}_{4}$ donor set is also found about the $\mathrm{Sn}(3)$ atom which tends towards a distorted octahedral geometry based on a consideration of the angles, the disparity in the $\mathrm{Sn}-\mathrm{O}$ bond distances notwithstanding.

Table 2
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for compound $\mathbf{2 9} a^{\text {a }}$

Bond lengths			
$\mathrm{Sn}(1)-\mathrm{O}(1)$	2.096(11)	$\mathrm{Sn}(1)-\mathrm{O}(2)$	2.038 (10)
$\mathrm{Sn}(1)-\mathrm{O}(3)$	2.303(10)	$\mathrm{Sn}(1)-\mathrm{C}(9)$	2.101(12)
$\mathrm{Sn}(1)-\mathrm{C}(10)$	$2.099(12)$	$\mathrm{Sn}(2)-\mathrm{O}(1)$	2.073(9)
$\mathrm{Sn}(2)-\mathrm{O}(2)$	2.119(10)	$\mathrm{Sn}(2)-\mathrm{O}(5)$	2.376 (10)
$\mathrm{Sn}(2)-\mathrm{O}(7)$	$2.329(13)$	$\mathrm{Sn}(2)-\mathrm{C}(11)$	2.092(11)
$\mathrm{Sn}(2)-\mathrm{C}(12)$	2.104(11)	$\mathrm{Sn}(3)-\mathrm{O}(2)$	2.049(13)
$\mathrm{Sn}(3)-\mathrm{O}(4)$	$2.235(9)$	$\mathrm{Sn}(3)-\mathrm{O}(6)$	2.212(9)
$\mathrm{Sn}(3)-\mathrm{O}(10)^{\text {i }}$	$2.523(12)$	$\mathrm{Sn}(3)-\mathrm{C}(13)$	2.088(14)
$\mathrm{Sn}(3)-\mathrm{C}(14)$	2.097(14)	$\mathrm{Sn}(4)-\mathrm{O}(1)$	2.026(12)
$\mathrm{Sn}(4)-\mathrm{O}(8)$	2.219(11)	$\mathrm{Sn}(4)-\mathrm{O}(9)$	2.229(11)
$\mathrm{Sn}(4)-\mathrm{C}(15)$	$2.125(14)$	Sn(4)-C(16)	2.133(16)
Bond angles			
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{O}(2)$	77.1(3)	$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{O}(3)$	165.1(4)
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{C}(9)$	95.6(4)	$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{C}(10)$	100.3(5)
$\mathrm{O}(2)-\mathrm{Sn}(1)-\mathrm{O}(3)$	89.0(4)	$\mathrm{O}(2)-\mathrm{Sn}(1)-\mathrm{C}(9)$	111.8(5)
$\mathrm{O}(2)-\mathrm{Sn}(1)-\mathrm{C}(10)$	105.6(5)	$\mathrm{O}(3)-\mathrm{Sn}(1)-\mathrm{C}(9)$	84.3(4)
$\mathrm{O}(3)-\mathrm{Sn}(1)-\mathrm{C}(10)$	88.7(6)	$\mathrm{C}(9)-\mathrm{Sn}(1)-\mathrm{C}(10)$	141.8(5)
$\mathrm{O}(1)-\mathrm{Sn}(2)-\mathrm{O}(2)$	75.9(3)	$\mathrm{O}(1)-\mathrm{Sn}(2)-\mathrm{O}(5)$	162.5(4)
$\mathrm{O}(1)-\mathrm{Sn}(2)-\mathrm{O}(7)$	88.2(5)	$\mathrm{O}(1)-\mathrm{Sn}(2)-\mathrm{C}(11)$	99.6(5)
$\mathrm{O}(1)-\mathrm{Sn}(2)-\mathrm{C}(12)$	102.2(5)	$\mathrm{O}(2)-\mathrm{Sn}(2)-\mathrm{O}(5)$	86.6(4)
$\mathrm{O}(2)-\mathrm{Sn}(2)-\mathrm{O}(7)$	164.0(5)	$\mathrm{O}(2)-\mathrm{Sn}(2)-\mathrm{C}(11)$	97.2(6)
$\mathrm{O}(2)-\mathrm{Sn}(2)-\mathrm{C}(12)$	99.5(5)	$\mathrm{O}(5)-\mathrm{Sn}(2)-\mathrm{O}(7)$	109.3(3)
$\mathrm{O}(5)-\mathrm{Sn}(2)-\mathrm{C}(11)$	82.4(6)	$\mathrm{O}(5)-\mathrm{Sn}(2)-\mathrm{C}(12)$	80.4(6)
$\mathrm{O}(7)-\mathrm{Sn}(2)-\mathrm{C}(11)$	86.7(7)	$\mathrm{O}(7)-\mathrm{Sn}(2)-\mathrm{C}(12)$	82.3(6)
$\mathrm{C}(11)-\mathrm{Sn}(2)-\mathrm{C}(12)$	155.1(5)	$\mathrm{O}(2)-\mathrm{Sn}(3)-\mathrm{O}(4)$	93.8(4)
$\mathrm{O}(2)-\mathrm{Sn}(3)-\mathrm{O}(6)$	95.6(4)	$\mathrm{O}(2)-\mathrm{Sn}(3)-\mathrm{O}(10)^{\text {i }}$	174.6(3)
$\mathrm{O}(2)-\mathrm{Sn}(3)-\mathrm{C}(13)$	99.6(5)	$\mathrm{O}(2)-\mathrm{Sn}(3)-\mathrm{C}(14)$	100.5(5)
$\mathrm{O}(4)-\mathrm{Sn}(3)-\mathrm{O}(6)$	170.6(5)	$\mathrm{O}(4)-\mathrm{Sn}(3)-\mathrm{O}(10)^{\text {i }}$	80.9(4)
$\mathrm{O}(4)-\mathrm{Sn}(3)-\mathrm{C}(13)$	91.4(5)	$\mathrm{O}(4)-\mathrm{Sn}(3)-\mathrm{C}(14)$	87.0(5)
$\mathrm{O}(6)-\mathrm{Sn}(3)-\mathrm{O}(10)^{\text {i }}$	89.8(4)	$\mathrm{O}(6)-\mathrm{Sn}(3)-\mathrm{C}(13)$	86.9(5)
$\mathrm{O}(6)-\mathrm{Sn}(3)-\mathrm{C}(14)$	91.4(5)	$\mathrm{O}(10)^{\mathrm{i}}-\mathrm{Sn}(3)-\mathrm{C}(13)$	80.1(5)
$\mathrm{O}(10)^{\mathrm{i}}-\mathrm{Sn}(3)-\mathrm{C}(14)$	79.9(5)	$C(13)-\operatorname{Sn}(3)-C(14)$	159.9(7)
$\mathrm{O}(1)-\mathrm{Sn}(4)-\mathrm{O}(8)$	92.1(4)	$\mathrm{O}(1)-\mathrm{Sn}(4)-\mathrm{O}(9)$	79.6(4)
$\mathrm{O}(1)-\mathrm{Sn}(4)-\mathrm{C}(15)$	112.0(6)	$\mathrm{O}(1)-\mathrm{Sn}(4)-\mathrm{C}(16)$	106.9(6)
$\mathrm{O}(8)-\mathrm{Sn}(4)-\mathrm{O}(9)$	168.7(4)	$\mathrm{O}(8)-\mathrm{Sn}(4)-\mathrm{C}(15)$	84.3(6)
$\mathrm{O}(8)-\mathrm{Sn}(4)-\mathrm{C}(16)$	90.1(6)	$\mathrm{O}(9)-\mathrm{Sn}(4)-\mathrm{C}(15)$	91.6(5)
$\mathrm{O}(9)-\mathrm{Sn}(4)-\mathrm{C}(16)$	99.7(6)	$\mathrm{C}(15)-\mathrm{Sn}(4)-\mathrm{C}(16)$	140.8(8)
$\mathrm{Sn}(1)-\mathrm{O}(1)-\mathrm{Sn}(2)$	103.2(5)	$\mathrm{Sn}(1)-\mathrm{O}(1)-\mathrm{Sn}(4)$	125.0(4)
$\mathrm{Sn}(2)-\mathrm{O}(1)-\mathrm{Sn}(4)$	131.8(5)	$\mathrm{Sn}(1)-\mathrm{O}(2)-\mathrm{Sn}(2)$	103.6(6)
$\mathrm{Sn}(1)-\mathrm{O}(2)-\mathrm{Sn}(3)$	128.8(5)	$\mathrm{Sn}(2)-\mathrm{O}(2)-\mathrm{Sn}(3)$	127.6(4)
$\mathrm{Sn}(1)-\mathrm{O}(3)-\mathrm{C}(1)$	130.6(8)	$\mathrm{Sn}(3)-\mathrm{O}(4)-\mathrm{C}(1)$	127.0(9)
$\mathrm{Sn}(2)-\mathrm{O}(5)-\mathrm{C}(3)$	127.8(9)	$\mathrm{Sn}(3)-\mathrm{O}(6)-\mathrm{C}(3)$	123.4(10)
$\mathrm{Sn}(2)-\mathrm{O}(7)-\mathrm{C}(5)$	130.8(11)	$\mathrm{Sn}(4)-\mathrm{O}(8)-\mathrm{C}(5)$	128.6(11)
$\mathrm{Sn}(4)-\mathrm{O}(9)-\mathrm{C}(7)$	108.1(9)	$\mathrm{Sn}(3)-\mathrm{O}(10)^{\mathrm{i}}-\mathrm{C}(7)^{\mathrm{i}}$	149.7(10)

${ }^{\text {a }}$ Symmetry operation i, $1-x ; 1-y ; 1 / 2+z$.

As mentioned above, 29a is one of two polymorphs for which full structure determinations are available.

In our hands, 29a crystallised as a mixture of different polymorphs from a solution of CHCl_{3}-hexane (1:2) within 3 days, as evidenced by the number of ${ }^{119} \mathrm{Sn}$ -MAS-NMR signals (ca. 6). The exact number of signals could not be determined owing to problems with overlapping spinning sidebands. From this mixture, a crystal was selected for the X-ray structure analysis, which showed a new polymorph for 29a. The molecular structures for the two polymorphs are in essential agreement with each other. The lack of crystallographic

Table 3
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for compounds 20a, 5a and 36

	20a ${ }^{\text {a }}$	$5 a^{\text {b }}$	36 (molecule a) ${ }^{\text {c }}$		36 (molecule b)
Bond lengths					
$\mathrm{Sn}(1)-\mathrm{O}(1)$.	2.058(3)	2.042(4)	2.071(4)	$\mathrm{Sn}(3)-\mathrm{O}(2)$.	2.060(4)
$\mathrm{Sn}(1)-\mathrm{O}(1)^{\text {i }}$	$2.161(3)$	$2.115(4)$	$2.113(4)$	$\mathrm{Sn}(3)-\mathrm{O}(2)^{\text {i }}$	$2.132(4)$
$\mathrm{Sn}(1)-\mathrm{X}(1)$	2.8222(9)	$2.174(4)$	2.157(3)	$\mathrm{Sn}(3)-\mathrm{F}(2)$	$2.170(4)$
$\mathrm{Sn}(1)-\mathrm{C}(1)$	$2.167(5)$	2.128(9)	$2.146(7)$	$\mathrm{Sn}(3)-\mathrm{C}(25)$	$2.147(6)$
$\mathrm{Sn}(1)-\mathrm{C}(\mathrm{a})$	$2.153(6)$	$2.124(9)$	$2.146(6)$	$\mathrm{Sn}(3)-\mathrm{C}(31)$	$2.156(6)$
$\mathrm{Sn}(2)-\mathrm{O}(1)$	2.034(3)	2.011(4)	2.023(4)	$\mathrm{Sn}(4)-\mathrm{O}(2)$	2.021(4)
$\mathrm{Sn}(2)-\mathrm{X}(1)$	$2.9542(17)$	2.241(4)	$2.277(4)$	$\mathrm{Sn}(4)-\mathrm{F}(2)$	$2.231(4)$
$\mathrm{Sn}(2)-\mathrm{Y}$	$2.5995(16)$	$2.011(4)$	2.4541 (16)	$\mathrm{Sn}(4)-\mathrm{Cl}(2)$	2.4443 (18)
$\mathrm{Sn}(2)-\mathrm{C}(\mathrm{b})$	2.164(7)	$2.138(6)$	2.143 (6)	$\mathrm{Sn}(4)-\mathrm{C}(37)$	$2.147(5)$
$\mathrm{Sn}(2)-\mathrm{C}(\mathrm{c})$	$2.164(6)$	2.142(7)	2.171(7)	$\mathrm{Sn}(4)-\mathrm{C}(43)$	$2.138(8)$
Bond angles					
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{O}(1)^{\mathrm{i}}$	74.82(14)	73.93(18)	74.76(18)	$\mathrm{O}(2)-\mathrm{Sn}(3)-\mathrm{O}(2)^{\mathrm{i}}$	73.76(18)
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{X}(1)$	80.24(9)	72.68(15)	73.07(14)	$\mathrm{O}(2)-\mathrm{Sn}(3)-\mathrm{F}(2)$	72.94(14)
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{C}(1)$	112.72(19)	115.6(3)	116.3(2)	$\mathrm{O}(2)-\mathrm{Sn}(3)-\mathrm{C}(25)$	112.59(19)
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{C}(\mathrm{a})$	111.05(18)	115.2(4)	111.7(3)	$\mathrm{O}(2)-\mathrm{Sn}(3)-\mathrm{C}(31)$	109.9(2)
$\mathrm{O}(1)^{\mathrm{i}}-\mathrm{Sn}(1)-\mathrm{X}(1)$	155.06(9)	146.51(15)	147.82(15)	$\mathrm{O}(2)-\mathrm{Sn}(3)-\mathrm{F}(2)$	146.70(15)
$\mathrm{O}(1)^{\mathrm{i}}-\mathrm{Sn}(1)-\mathrm{C}(1)$	99.28(18)	98.3(3)	99.8(2)	$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Sn}(3)-\mathrm{C}(25)$	99.7(2)
$\mathrm{O}(1)^{\mathrm{i}}-\mathrm{Sn}(1)-\mathrm{C}(\mathrm{a})$	98.57(18)	101.4(3)	103.3(2)	$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Sn}(3)-\mathrm{C}(31)$	102.73(18)
$\mathrm{X}(1)-\mathrm{Sn}(1)-\mathrm{C}(1)$	89.95(15)	98.2(3)	93.5(2)	$\mathrm{F}(2)-\mathrm{Sn}(3)-\mathrm{C}(25)$	92.8(2)
$\mathrm{X}(1)-\mathrm{Sn}(1)-\mathrm{C}(\mathrm{a})$	90.56(16)	90.4(3)	89.5(2)	$\mathrm{F}(2)-\mathrm{Sn}(3)-\mathrm{C}(31)$	88.74(19)
$\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{C}(\mathrm{a})$	135.6(2)	128.7(4)	130.5(3)	$\mathrm{C}(25)-\mathrm{Sn}(3)-\mathrm{C}(31)$	136.0(2)
$\mathrm{O}(1)-\mathrm{Sn}(2)-\mathrm{X}(1)$	$77.35(10)$	71.81(15)	71.40(15)	$\mathrm{O}(2)-\mathrm{Sn}(4)-\mathrm{F}(2)$	72.35 (14)
$\mathrm{O}(1)-\mathrm{Sn}(2)-\mathrm{Y}$	89.44(10)	84.73(16)	87.12(12)	$\mathrm{O}(2)-\mathrm{Sn}(4)-\mathrm{Cl}(2)$	90.80(12)
$\mathrm{O}(1)-\mathrm{Sn}(2)-\mathrm{C}(\mathrm{b})$	113.7(2)	113.3(2)	109.1(2)	$\mathrm{O}(2)-\mathrm{Sn}(4)-\mathrm{C}(37)$	111.1(2)
$\mathrm{O}(1)-\mathrm{Sn}(2)-\mathrm{C}(\mathrm{c})$	116.48(18)	109.7(3)	115.7(2)	$\mathrm{O}(2)-\mathrm{Sn}(4)-\mathrm{C}(43)$	114.5(3)
$\mathrm{X}(1)-\mathrm{Sn}(2)-\mathrm{Y}$	166.77(2)	156.52(14)	158.49(9)	$\mathrm{F}(2)-\mathrm{Sn}(4)-\mathrm{Cl}(2)$	163.02(10)
$\mathrm{X}(1)-\mathrm{Sn}(2)-\mathrm{C}(\mathrm{b})$	86.7(2)	92.9(2)	84.84(19)	$\mathrm{F}(2)-\mathrm{Sn}(4)-\mathrm{C}(37)$	86.71(19)
$\mathrm{X}(1)-\mathrm{Sn}(2)-\mathrm{C}(\mathrm{c})$	87.15(17)	89.0(3)	91.5(2)	$\mathrm{F}(2)-\mathrm{Sn}(4)-\mathrm{C}(43)$	87.7(4)
$\mathrm{Y}-\mathrm{Sn}(2)-\mathrm{C}(\mathrm{b})$	99.6(2)	97.5(2)	103.90(17)	$\mathrm{Cl}(2)-\mathrm{Sn}(4)-\mathrm{C}(37)$	101.79(17)
$\mathrm{Y}-\mathrm{Sn}(2)-\mathrm{C}(\mathrm{c})$	98.18(18)	98.1(3)	96.9(2)	$\mathrm{Cl}(2)-\mathrm{Sn}(4)-\mathrm{C}(43)$	97.7(3)
$\mathrm{C}(\mathrm{b})-\mathrm{Sn}(2)-\mathrm{C}(\mathrm{c})$	126.5(3)	135.2(3)	131.2(2)	$\mathrm{C}(37)-\mathrm{Sn}(4)-\mathrm{C}(43)$	129.7(3)
$\mathrm{Sn}(1)-\mathrm{O}(1)-\mathrm{Sn}(2)$	124.71(16)	113.9(2)	114.05(18)	$\mathrm{Sn}(3)-\mathrm{O}(2)-\mathrm{Sn}(4)$	113.18(17)
$\mathrm{Sn}(1)^{\mathbf{i}}-\mathrm{O}(1)-\mathrm{Sn}(2)$	130.10(17)	138.6(2)	140.7(2)	$\mathrm{Sn}(3)-\mathrm{O}(2)-\mathrm{Sn}(4){ }^{\text {i }}$	$140.5(2)$
$\mathrm{Sn}(1)-\mathrm{O}(1)-\mathrm{Sn}(1)^{\mathrm{i}}$	105.18(14)	106.07(18)	105.24(18)	$\mathrm{Sn}(3)-\mathrm{O}(2)-\mathrm{Sn}(3)^{\text {i }}$	106.24(18)
$\mathrm{Sn}(1)-\mathrm{X}(1)-\mathrm{Sn}(2)$	77.69(3)	100.64(14)	101.48(14)	$\mathrm{Sn}(3)-\mathrm{F}(2)-\mathrm{Sn}(4)$	101.42(13)

[^2]symmetry in 29a is unusual and indeed the remaining structures of 20a, 5a and $\mathbf{3 6}$ are centrosymmetric.

The molecular structure of $\mathbf{2 0 a}$ shows a centrosymmetric $\left(i-\mathrm{Pr}_{2} \mathrm{Sn}_{2} \mathrm{O}_{2}\right.$ core connected, via the oxygen atoms, to two $i-\mathrm{Pr}_{2} \mathrm{Sn}$ entities. Almost symmetric bromide bridges between the endo- and exo-cyclic tin atoms are present. The $\operatorname{Sn}(2)-$ bound $\operatorname{Br}(2)$ atoms are terminal in that the intramolecular $\operatorname{Sn}(1) \cdots \operatorname{Br}(2)$ separations of 3.530 (3) \AA are not indicative of significant bonding interactions between these atoms. The coordination geometries for the tin atoms are both based on trigonal-bipyramids. In the case of $\mathrm{Sn}(1)$, the $\mathrm{O}(1)$ and $\operatorname{Br}(1)$ atoms occupy the axial positions, and two bromides occupy the axial positions about the $\operatorname{Sn}(2)$ atom. The influence of the close $\operatorname{Sn}(1) \cdots \operatorname{Br}(2)$ interaction is such to expand the $\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{C}(4)$ angle to
135.6(2) ${ }^{\circ}$ compared with $126.5(3)^{\circ}$ for $\mathrm{C}(7)-\mathrm{Sn}(2)-$ $\mathrm{C}(10)$. The ${ }^{119} \mathrm{Sn}-\mathrm{MAS}-\mathrm{NMR}$ spectrum of 20a showing two signals at -72.0 and -148.0 ppm , is in agreement with the centrosymmetric space group found in the Xray diffraction experiment. The molecular structure of the fluoride analogue, $\mathbf{5 a}$, is in essential agreement with that of 20a.
Allowing for the replacement of the bromides by fluorides and the substitution of the isopropyl substituents with cyclohexyl, the structure of $\mathbf{5 a}$ is as described above for 20a. The intramolecular $\operatorname{Sn}(1) \cdots \mathrm{F}(2)$ separations are $3.472(4) \AA$. The key difference between the two structures is found in the association of two chloroform molecules to the tetrameric unit as illustrated in Fig. 4. Hydrogen bonding interactions between the terminal $\mathrm{F}(2)$ atoms are noted so that $\mathrm{H} \cdots \mathrm{F}(2)$ is $1.91 \AA$,
$\mathrm{C}(25) \cdots \mathrm{F}(2)$ is $2.868(10) \AA$ and the angle subtended at H is 161°. While full details are not reported here, a preliminary structure of the chloride analogue, 12a, has been determined. Difficulties in the refinement owing to the lack of resolution of two cyclohexyl rings preclude a full report but suffice to say that the structure resembles very closely the prototype $\mathbf{5 a}$. The final structure determined is an example of a novel mixed halide, i.e. 36.

The structure of $\mathbf{3 6}$ crystallises with two independent centrosymmetric molecules comprising the asymmetric unit. One of the molecules is shown in Fig. 5 and the other is in essential agreement with this. Selected geometric parameters for both independent molecules are collected in Table 3. From Fig. 5, it is apparent that the more electronegative fluorine atoms function as symmetric bridges between the endo- and exo-cyclic tin atoms. The chlorine atoms occupy terminal positions with $\mathrm{Sn}(1) \cdots \mathrm{Cl}(1)$ being $3.707(3) \AA$ and $\mathrm{Sn}(3) \cdots \mathrm{Cl}(2)$ being 3.814(3) A, distances again not indicative of significant bonding interactions. Very recently, the crystal structure of the phenyl analogue was reported, i.e. $\left[\mathrm{Ph}_{2}(\mathrm{~F}) \mathrm{SnOSn}(\mathrm{Cl}) \mathrm{Ph}_{2}\right]_{2}$ [52]. In this structure, the fluoride bridges are similar with $\mathrm{Sn}(1)-\mathrm{F}(1)$ and $\mathrm{Sn}(2)-$ $F(1)$ being $2.175(4)$ and $2.222(5) \AA$, respectively and the $\mathrm{Sn}(1) \cdots \mathrm{Cl}(1)$ separation is $3.663(2) \AA$ [52].

3. Experimental

3.1. General methods

The diorganotin oxides $\left(n-\mathrm{Bu}_{2} \mathrm{SnO}\right)_{n}$ and $\left(n-\right.$ Oct $_{2}-$ $\mathrm{SnO})_{n}$ were commercially available (Aldrich, Ventron), whereas $\left(\mathrm{Me}_{2} \mathrm{SnO}\right)_{n},\left(\mathrm{Et}_{2} \mathrm{SnO}\right)_{n},\left(i-\mathrm{Pr}_{2} \mathrm{SnO}\right)_{n},\left(c-\mathrm{Hex}_{2^{-}}\right.$ $\mathrm{SnO})_{n}$ and $\left(\mathrm{Ph}_{2} \mathrm{SnO}\right)_{n}$ were prepared according to literature procedures [41]. ${ }^{119} \mathrm{Sn}-\mathrm{NMR}$ (100.74 MHz) and ${ }^{19} \mathrm{~F}$-NMR (254.19 MHz) spectra were recorded using a JEOL-GX 270 MHz FT-NMR spectrometer and are referenced to $\mathrm{Me}_{4} \mathrm{Sn}$ and CFCl_{3}, respectively. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (299.98 MHz) and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (75.44 MHz) were obtained on a Varian 300 MHz Unity Plus NMR spectrometer, and are referenced to $\mathrm{Me}_{4} \mathrm{Si}$. All chemical shifts were recorded in CDCl_{3}, unless otherwise indicated. ${ }^{119} \mathrm{Sn}$-MAS-NMR spectra were recorded using a JEOL Eclipse Plus 400 MHz FT-NMR spectrometer, referenced to $\mathrm{Me}_{4} \mathrm{Sn}$. Uncorrected melting points (m.p.) were determined on a Reichert hot stage. Microanalyses were performed at the Australia National University (Canberra, Australia) or by CMAS Belmont (Geelong, Australia).

3.2. General procedure for the reaction of $\left(R_{2} \mathrm{SnO}\right)_{n}$ with $\mathrm{NH}_{4} \mathrm{X}$

The organotin oxide, $\left(\mathrm{R}_{2} \mathrm{SnO}\right)_{n},(10.0 \mathrm{mmol}, 1.65 \mathrm{~g}$ for $\mathrm{R}=\mathrm{Me}, 1.93 \mathrm{~g}$ for $\mathrm{R}=\mathrm{Et}, 2.49 \mathrm{~g}$ for $\mathrm{R}=n-\mathrm{Bu}, 3.61$ g for $\mathrm{R}=n$-Oct, 3.01 g for $\mathrm{R}=c$-Hex, 2.21 g for $\mathrm{R}=i$ $\mathrm{Pr}, 2.89 \mathrm{~g}$ for $\mathrm{R}=\mathrm{Ph}$) was suspended in 1,4-dioxane (50 $\mathrm{ml})$ and a saturated aqueous solution (50 ml) of the appropriate $\mathrm{NH}_{4} \mathrm{X}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{OAc})$ was added. The reaction mixture was heated under reflux until all of the $\left(\mathrm{R}_{2} \mathrm{SnO}\right)_{n}$ had dissolved (cf. Table 1). Then, the solvent mixture was almost entirely removed in vacuo and the resulting residue was extracted with $\mathrm{CHCl}_{3}(2 \times$ $100 \mathrm{ml})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, a crude product was obtained, which was recrystallised from chloroform-hexane.

For $\left(\mathrm{Me}_{2} \mathrm{SnO}\right)_{n}-\mathrm{NH}_{4} \mathrm{~F}$ a complex mixture was obtained $(0.33 \mathrm{~g})$. No pure product could be isolated (see text).

For $\left(\mathrm{Et}_{2} \mathrm{SnO}\right)_{n}-\mathrm{NH}_{4} \mathrm{~F}$ a complex mixture was obtained $(0.49 \mathrm{~g})$. No pure product could be isolated (see text).

3.2.1. $\left[n-\mathrm{Bu}_{2}(F) \operatorname{SnOSn}(F) n-\mathrm{Bu}_{2}\right]_{2}(3 \boldsymbol{a})$

White solid ($1.95 \mathrm{~g}, 75 \%$, m.p. $180-185{ }^{\circ} \mathrm{C}$ (Lit. m.p. $115-117{ }^{\circ} \mathrm{C}$) [4]). ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta=0.91-0.97(\mathrm{~m}, 24 \mathrm{H})$, $1.35-1.51(\mathrm{~m}, 32 \mathrm{H}), 1.63-1.73(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$: $\delta=13.5, \quad 23.1 \quad\left({ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{117 / 19} \mathrm{Sn}\right)=591 / 618 \mathrm{~Hz}\right), 24.0$ $\left({ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{117 / 19} \mathrm{Sn}\right)=567 / 594 \mathrm{~Hz}\right), 26.7,26.8 .{ }^{19} \mathrm{~F}-\mathrm{NMR}$: $\delta=-132.4 \quad\left({ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{117 / 119} \mathrm{Sn}\right)=741 \quad \mathrm{~Hz}, \quad{ }^{1} J\left({ }^{19} \mathrm{~F}-\right.\right.$ $\left.\left.{ }^{117 / 119} \mathrm{Sn}\right)=1763 \mathrm{~Hz}\right) .{ }^{119} \mathrm{Sn}$-NMR: $\delta=-142.2 \quad(\mathrm{t}$, $\left.{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=771 \mathrm{~Hz}\right),-159.4\left(\mathrm{t},{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=\right.$ 1795 Hz). Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{72} \mathrm{~F}_{4} \mathrm{O}_{2} \mathrm{Sn}_{4}$ (1039.7): C, 37.0; H, 7.0. Found: C, 37.4; H, 7.6\%.

For $\left(n-\mathrm{Oct}_{2} \mathrm{SnO}\right)_{n}-\mathrm{NH}_{4} \mathrm{~F}$ a complex mixture was obtained $(2.50 \mathrm{~g})$. No pure product could be isolated (see text).

3.2.2. $\left[c-\operatorname{Hex}_{2}(F) \mathrm{SnOSn}(F) c-\mathrm{Hex}_{2}\right]_{2}$ (5a)

Colourless solid ($2.68 \mathrm{~g}, 86 \%$, m.p. (dec.) $>295{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$-NMR: $\delta=1.20-2.50(\mathrm{~m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta=26.8,28.8$, $28.9, \quad 30.2, \quad 30.4,42.0,42.2 .{ }^{19} \mathrm{~F}-\mathrm{NMR}: ~ \delta=-144.9$ $\left({ }^{1} J\left({ }^{19} \mathrm{~F}-117 / 119 \mathrm{Sn}_{\text {endo }}\right)=723,{ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{117 / 119} \mathrm{Sn}_{\text {endo }}\right)=822\right.$ $\left.\mathrm{Hz},{ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{117 / 119} \mathrm{Sn}_{\text {exo }}\right)=1875 / 1956 \mathrm{~Hz}\right) .{ }^{119} \mathrm{Sn}-\mathrm{NMR}$: $\delta=-237.6\left(\mathrm{t},{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=1950 \mathrm{~Hz}\right),-212.0(\mathrm{t}$, $\left.{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right) 778 \mathrm{~Hz}\right)$. Anal. Calc. for $\mathrm{C}_{48} \mathrm{H}_{88} \mathrm{~F}_{4} \mathrm{O}_{2} \mathrm{Sn}_{4}$ (1248.0): C, 46.2; H, 7.1. Found: C, 46.3; H, 7.2\%.

For $\left(i-\mathrm{Pr}_{2} \mathrm{SnO}\right)_{n}-\mathrm{NH}_{4} \mathrm{~F}$ a complex mixture was obtained $(1.80 \mathrm{~g})$. No pure product could be isolated (see text). For $\left(\mathrm{Ph}_{2} \mathrm{SnO}\right)_{n}-\mathrm{NH}_{4} \mathrm{~F}$ a complex mixture was obtained $(0.58 \mathrm{~g})$. No pure product could be isolated (see text).

3.2.3. $\left[\mathrm{Me}_{2}(\mathrm{Cl}) \mathrm{SnOSn}(\mathrm{Cl}) \mathrm{Me}_{2}\right]_{2}(8 \boldsymbol{a})$

White solid ($1.58 \mathrm{~g}, 82 \%$, m p. $>280{ }^{\circ} \mathrm{C}$ (Lit. m.p. $>$ $300{ }^{\circ} \mathrm{C}$) [4]). ${ }^{119} \mathrm{Sn}-\mathrm{NMR}: \delta=-62.6,-114.4$.

3.2.4. $\left[\mathrm{Et}_{2}(\mathrm{Cl}) \mathrm{SnOSn}(\mathrm{Cl}) \mathrm{Et}_{2}\right]_{2}(9 \boldsymbol{a})$

White solid ($1.32 \mathrm{~g}, 60 \%$, m.p. $168-170{ }^{\circ} \mathrm{C}$ (Lit. m.p. 175.5-176.5 ${ }^{\circ} \mathrm{C}$) [4]). ${ }^{119} \mathrm{Sn}$-NMR: $\delta=-89.1,-137.6$.

3.2.5. $\left[n-\mathrm{Bu}_{2}(\mathrm{Cl}) \mathrm{SnOSn}(\mathrm{Cl}) n-\mathrm{Bu}_{2}\right]_{2}$ (10a)

White solid ($2.65 \mathrm{~g}, 96 \%$, m.p. $110-111{ }^{\circ} \mathrm{C}$ (Lit. m.p. $\left.112-114{ }^{\circ} \mathrm{C}\right)$ [4]). ${ }^{119} \mathrm{Sn}$-NMR: $\delta=-91.4\left({ }^{2} J\left({ }^{117} \mathrm{Sn}-\right.\right.$ $\left.\left.\mathrm{O}-{ }^{119} \mathrm{Sn}\right)=74 \mathrm{~Hz}\right), \quad-140.3\left({ }^{2} J\left({ }^{117} \mathrm{Sn}-\mathrm{O}-{ }^{119} \mathrm{Sn}\right)=71\right.$ Hz).

3.2.6. $\left[n-\mathrm{Oct}_{2}(\mathrm{Cl}) \mathrm{SnOSn}(\mathrm{Cl}) n-\mathrm{Oct}_{2}\right]_{2}$ (11a)

White solid ($3.58 \mathrm{~g}, 92 \%$, m.p. $95{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta=$ $0.88(\operatorname{broad~s}, 12 \mathrm{H}), 1.29($ broad s, 34 H$), 1.78($ broad s, $4 \mathrm{H}), 1.81$ (broad s, 18H). ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta=14.0,14.0$, 22.6, 22.6, 25.0, 25.2, 29.1, 29.2, 29.2, 31.8, 31.9, 33.1, 33.2, 33.5, 33.6. ${ }^{119} \mathrm{Sn}-\mathrm{NMR}: \quad \delta=-90.8 \quad\left({ }^{2} J\left({ }^{117} \mathrm{Sn}-\right.\right.$ $\left.\left.\mathrm{O}-{ }^{119} \mathrm{Sn}\right)=69 \mathrm{~Hz}\right),-138.2 \quad\left({ }^{2} J\left({ }^{117} \mathrm{Sn}-\mathrm{O}-{ }^{119} \mathrm{Sn}\right)=71\right.$ $\mathrm{Hz}) .{ }^{119} \mathrm{Sn}-\mathrm{MAS}-\mathrm{NMR}: \quad \delta=-84.0, \quad-141.0$. Anal. Calc. for $\mathrm{C}_{64} \mathrm{H}_{136} \mathrm{Cl}_{4} \mathrm{O}_{2} \mathrm{Sn}_{4}$ (1554.4): C, $49.5 ; \mathrm{H}, 8.8$. Found: C, 48.5; H, 9.0\%.

3.2.7. $\left[\mathrm{c}-\mathrm{Hex}_{2}(\mathrm{Cl}) \mathrm{SnOSn}(\mathrm{Cl}) \mathrm{c}-\mathrm{Hex}_{2}\right]_{2}(12 a)$

Colourless solid ($2.76 \mathrm{~g}, 84 \%$). M p.(dec.) $>250{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=1.20-2.50(\mathrm{~m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta=26.2,26.7$, 26.8, 28.3, 29.0, 29.9, 30.5, 31.3. ${ }^{119}$ Sn-NMR: $\delta=-$ 139.0, $\quad-202.7 \quad\left({ }^{2} J\left({ }^{117} \mathrm{Sn}-\mathrm{O}-{ }^{119} \mathrm{Sn}\right)=89 \mathrm{~Hz}\right)$. Anal. Calc. for $\mathrm{C}_{48} \mathrm{H}_{88} \mathrm{Cl}_{4} \mathrm{O}_{2} \mathrm{Sn}_{4}$ (1313.9): C, $43.9 ; \mathrm{H}, 6.8$. Found: C, 43.0; H, 6.5\%.

3.2.8. $\left[E t_{2}(\mathrm{Br}) \mathrm{SnOSn}(\mathrm{Br}) E t_{2}\right]_{2}$ (16a)

White solid ($1.59 \mathrm{~g}, 60 \%$, m.p. $178{ }^{\circ} \mathrm{C}$ (Lit. m.p. $172-$ $173{ }^{\circ} \mathrm{C}$) [3]). ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta=1.41-1.52(\mathrm{~m}, 24 \mathrm{H}), 1.86-$ $1.97 \quad(\mathrm{t}, \quad 16 \mathrm{H}) . \quad{ }^{13} \mathrm{C}-\mathrm{NMR}: \quad \delta=9.55, \quad 10.4, \quad 27.8$ $\left({ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{117 / 19} \mathrm{Sn}\right)=535 / 561 \quad \mathrm{~Hz}\right), \quad 29.4 \quad\left({ }^{1} J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{117 / 19} \mathrm{Sn}\right)=586 / 612 \quad \mathrm{~Hz}\right) . \quad{ }^{119} \mathrm{Sn}-\mathrm{NMR}: \quad \delta=-79.3$ $\left({ }^{2} J\left({ }^{117} \mathrm{Sn}-\mathrm{O}-{ }^{119} \mathrm{Sn}\right)=79 \quad \mathrm{~Hz}\right), \quad-128.9 \quad\left({ }^{2} J\left({ }^{117} \mathrm{Sn}-\right.\right.$ $\left.\mathrm{O}-{ }^{119} \mathrm{Sn}\right)=79 \mathrm{~Hz}$). Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{40} \mathrm{Br}_{4} \mathrm{O}_{2} \mathrm{Sn}_{4}$ (1058.9): C, 18.2; H, 3.8. Found: C, 18.5; H, 3.7\%.

3.2.9. $\left[n-B u_{2}(B r) \operatorname{SnOSn}(B r) n-B u_{2}\right]_{2}$ (17a)

White solid ($3.05 \mathrm{~g}, 95 \%$, m.p. $104{ }^{\circ} \mathrm{C}$ (Lit. m.p. 107$108{ }^{\circ} \mathrm{C}$) [3]). ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta=0.93-0.99(\mathrm{~m}, 24 \mathrm{H}), 1.36-$ $1.57(\mathrm{~m}, 16 \mathrm{H}), 1.70-2.10(\mathrm{~m}, 32 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta=13.5$, 13.5, 26.2, 26.4, $27.1\left({ }^{3} J\left({ }^{13} \mathrm{C}-{ }^{117 / 19} \mathrm{Sn}\right)=33 \mathrm{~Hz}\right), 27.7$ $\left({ }^{3} J\left({ }^{13} \mathrm{C}^{1}{ }^{117 / 19} \mathrm{Sn}\right)=30 \mathrm{~Hz}\right), \quad 36.0 \quad\left({ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{117 / 19} \mathrm{Sn}\right)=\right.$ $522 / 547 \mathrm{~Hz}), 36.2\left({ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{117 / 19} \mathrm{Sn}\right)=570 / 594 \mathrm{~Hz}\right)$. ${ }^{119} \mathrm{Sn}-\mathrm{NMR}: \delta=-81.3\left({ }^{2} J\left({ }^{117} \mathrm{Sn}-\mathrm{O}-{ }^{119} \mathrm{Sn}\right)=79 \mathrm{~Hz}\right)$, $-129.8 \quad\left({ }^{2} J\left({ }^{117} \mathrm{Sn}-\mathrm{O}-{ }^{119} \mathrm{Sn}\right)=79 \quad \mathrm{~Hz}\right) .{ }^{119} \mathrm{Sn}-\mathrm{MAS}-$ NMR: $\delta=-58.4, \quad-136.4$. Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{72} \mathrm{Br}_{4} \mathrm{O}_{2} \mathrm{Sn}_{4}$ (1283.4): C, 30.0; H, 5.7. Found: C, 30.5; H, 5.9\%.

3.2.10. $\left[n-\mathrm{Oct}_{2}(\mathrm{Br}) \operatorname{SnOSn}(\mathrm{Br}) n-\mathrm{Oct}_{2}\right]_{2}$ (18a)

Colourless solid ($3.90 \mathrm{~g}, 90 \%$, m.p. $64{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$: $\delta=0.87(\operatorname{broad~s}, 12 \mathrm{H}), 1.29($ broad s, 34 H$), 1.86(\operatorname{broad}$ $\mathrm{s}, 4 \mathrm{H}), 1.90($ broad s, 18 H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta=14.1,14.1$, $22.6,22.7,25.1,25.6,29.1,29.2,29.3,31.8,31.9,33.3$, 33.5, 36.4, 33.5. ${ }^{119} \mathrm{Sn}-\mathrm{NMR:} \quad \delta=-82.0 \quad{ }^{2} J\left({ }^{117} \mathrm{Sn}-\right.$ $\left.\left.\mathrm{O}-{ }^{119} \mathrm{Sn}\right)=79 \mathrm{~Hz}\right), \quad-130.1 \quad\left({ }^{2} J\left({ }^{117} \mathrm{Sn}-\mathrm{O}-{ }^{119} \mathrm{Sn}\right)=79\right.$ $\mathrm{Hz}) .{ }^{119} \mathrm{Sn}-\mathrm{MAS}-\mathrm{NMR}: \quad \delta=-74.0, \quad-134.0$. Anal. Calc. for $\mathrm{C}_{64} \mathrm{H}_{136} \mathrm{Br}_{4} \mathrm{O}_{2} \mathrm{Sn}_{4}$ (1732.2): C, 44.4; H, 7.9. Found: C, 44.3; H, 8.1\%.

3.2.11. $\left[i-\mathrm{Pr}_{2}(\mathrm{Br}) \mathrm{SnOSn}(\mathrm{Br}) i-\mathrm{Pr}_{2}\right]_{2}$ (20a)

Colourless solid ($2.34 \mathrm{~g}, 80 \%$, m.p. (dec.) $>270{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$-NMR: $\delta=1.24-1.73(\mathrm{~m}, 48 \mathrm{H}), 2.20-2.54(\mathrm{~m}, 8 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}: ~ \delta=20.1,21.5\left({ }^{2} J\left({ }^{13} \mathrm{C}-{ }^{117 / 19} \mathrm{Sn}\right)=18 \mathrm{~Hz}\right)$, 40.5. ${ }^{119} \mathrm{Sn}$-NMR: $\delta=-91.9\left({ }^{2} J\left({ }^{117} \mathrm{Sn}-\mathrm{O}-{ }^{119} \mathrm{Sn}\right)=98\right.$ $\mathrm{Hz}),-144.0\left({ }^{2} J\left({ }^{177} \mathrm{Sn}-\mathrm{O}-{ }^{119} \mathrm{Sn}\right)=98 \mathrm{~Hz}\right) .{ }^{119} \mathrm{Sn}-\mathrm{MAS}-$ NMR: $\delta=-72.0, \quad-148.0$. Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{56} \mathrm{Br}_{4} \mathrm{O}_{2} \mathrm{Sn}_{4}$ (1171.1): C, 24.6; H; 4.8. Found: C, 24.7 ; H, 4.8\%.

3.2.12. $\left[\mathrm{Me}_{2}(\mathrm{AcO}) \operatorname{SnOSn}(\mathrm{OAc}) \mathrm{Me}_{2}\right]_{2}$ (29a)

Colourless solid ($1.64 \mathrm{~g}, 76 \%$, m.p. $206-210{ }^{\circ} \mathrm{C}(\mathrm{Lit}$. m.p. $115-117{ }^{\circ} \mathrm{C}$) [49]). ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta=0.64-0.92$ (m, $24 \mathrm{H}), \quad 1.95 \quad(\mathrm{~s}, \quad 12 \mathrm{H}) . \quad{ }^{13} \mathrm{C}-\mathrm{NMR}: \quad \delta=5.92$ $\left({ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{117 / 19} \mathrm{Sn}\right)=715 / 750 \quad \mathrm{~Hz}\right), \quad 8.72 \quad\left({ }^{1} J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{117 / 19} \mathrm{Sn}\right)=766 / 800 \mathrm{~Hz}\right), 22.9(\mathrm{Me}), 177.5(\mathrm{C}=\mathrm{O}) .{ }^{119} \mathrm{Sn}-$ NMR: $\delta=-171.4 \quad\left({ }^{2} J\left({ }^{117} \mathrm{Sn}-\mathrm{O}-{ }^{119} \mathrm{Sn}\right)=103 \quad \mathrm{~Hz}\right)$, $-184.6\left({ }^{2} J\left({ }^{177} \mathrm{Sn}-\mathrm{O}-{ }^{119} \mathrm{Sn}\right)=101 \mathrm{~Hz}\right)$. Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{O}_{10} \mathrm{Sn}_{4}$ (863.2): C, 22.3; H, 4.2. Found: C, 22.6; H, 4.1\%.

3.2.13. $n-O c t_{2} \operatorname{Sn}(\mathrm{OAc})_{2}$ (32b)

Colourless oil ($3.71 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta=0.88$ (broad s, 6H), $1.29($ broad s, 28 H$), 1.67($ broad s, 6 H$)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta=13.9,22.5,24.3,25.0,25.5,29.0,31.7$, 33.1, $181.4(\mathrm{C}=\mathrm{O}) .{ }^{119} \mathrm{Sn}-\mathrm{NMR}: \delta=-148.1$.

3.2.14. $\mathrm{c}-\mathrm{Hex}_{2} \mathrm{Sn}(\mathrm{OAc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ (33b)

Colourless solid ($1.27 \mathrm{~g}, 91 \%$, m.p. $\left.50-54{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}-$ NMR: $\delta=0.80-1.99(\mathrm{~m}, 22 \mathrm{H}), 2.10(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$: $\delta=20.5(\mathrm{Me}), 26.3\left({ }^{4} J\left({ }^{13} \mathrm{C}-{ }^{117 / 19} \mathrm{Sn}\right)=12 \mathrm{~Hz}\right), 28.4$ $\left({ }^{3} J\left({ }^{13} \mathrm{C}-{ }^{117 / 119} \mathrm{Sn}\right)=100 / 104 \quad \mathrm{~Hz}\right), \quad 29.6 \quad\left({ }^{2} J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{117 / 1{ }^{19}} \mathrm{Sn}\right)=23 \mathrm{~Hz}\right), \quad 42.8 \quad\left({ }^{1} J\left({ }^{13} \mathrm{C}-{ }^{117 / 19} \mathrm{Sn}\right)=517 / 540\right.$ $\mathrm{Hz}), 181.4(\mathrm{C}=\mathrm{O}) .{ }^{119} \mathrm{Sn}-\mathrm{NMR}: \quad \delta=-215.3 .{ }^{119} \mathrm{Sn}-$ MAS-NMR: $\delta=-401.8$. (discussed in text) IR (KBr) $v\left(\mathrm{H}_{2} \mathrm{O}\right)$: $3394.7 \mathrm{~cm}^{-1}$. Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Sn}$ (421.1): C, 45.6; H, 7.2. Found: C, 45.7 ; H, 7.3%.

3.3. Synthesis of $\left[c-\mathrm{Hex}_{2}(F) \mathrm{SnOSn}(\mathrm{Cl}) \mathrm{c}-\mathrm{Hex}_{2}\right]_{2}$ (36)

A solution of $5 \mathrm{a}(0.11 \mathrm{~g}, 0.09 \mathrm{mmol})$ in toluene (2.0 $\mathrm{ml})$ was added to a solution of $\mathbf{1 2 a}(0.12 \mathrm{~g}, 0.09 \mathrm{mmol})$ in toluene (2.0 ml) and the mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 12 h . The solvent was removed in vacuo and the resulting residue was recrystallised from chloroform-
hexane to afford 36 as colourless crystals $(0.111 \mathrm{~g}, 95 \%)$. M.p. (dec.) $>230{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}: \quad \delta=1.20-2.50 \quad(\mathrm{~m})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}: ~ \delta=26.8,26.9,28.9,29.1,30.7,30.9,43.9$ $\left({ }^{2} J\left({ }^{13} \mathrm{C}^{-19} \mathrm{~F}\right)=6 \mathrm{~Hz}\right), 44.3\left({ }^{2} J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=11 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}-$ NMR: $\quad \delta=-124.1 \quad\left({ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{117 / 119} \mathrm{Sn}\right)=1220 \quad \mathrm{~Hz}\right.$, ${ }^{1} J\left({ }^{19} \mathrm{~F}-{ }^{117 / 119} \mathrm{Sn}\right)=1489 \mathrm{~Hz}$) and minor signals (see text). ${ }^{119} \mathrm{Sn}-\mathrm{NMR}: \quad \delta=-175.3 \quad\left(\mathrm{~d},{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=\right.$ $\left.1240 \mathrm{~Hz},{ }^{2} J\left({ }^{119} \mathrm{Sn}-\mathrm{O}-{ }^{117} \mathrm{Sn}\right)=220 \mathrm{~Hz}\right),-226.1(\mathrm{dd}$, ${ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=1540 \mathrm{~Hz},{ }^{2} J\left({ }^{119} \mathrm{Sn}-\mathrm{O}-{ }^{117 / 119} \mathrm{Sn}\right)=212 /$ $217 \mathrm{~Hz},{ }^{3} J\left({ }^{119} \mathrm{Sn}-\mathrm{O}-\mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=32 \mathrm{~Hz}$) and minor signals (see text). ${ }^{119} \mathrm{Sn}-\mathrm{MAS}-\mathrm{NMR} \delta=-183.0$ (4Sn, d, $\left.{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=1150 \quad \mathrm{~Hz}\right), \quad-226.0 \quad(2 \mathrm{Sn}, \quad \mathrm{d}$, $\left.{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=1550 \quad \mathrm{~Hz}\right), \quad-234.0 \quad(2 \mathrm{Sn}, \quad \mathrm{d}$, $\left.{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{19} \mathrm{~F}\right)=1630 \mathrm{~Hz}\right)$.

Anal. Calc. for $\mathrm{C}_{48} \mathrm{H}_{88} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{Sn}_{4}$ (1281.0): C, 45.0; H, 6.9. Found: C, 45.9; H, 7.4\%.

3.4. Crystallography

Intensity data for colourless crystals of 5a, 20a and 29a were measured at 173 K on a Rigaku AFC7R diffractometer fitted with $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation employing the $\omega-2 \theta$ scan technique in each case. Data for 36 were measured at 223 K on a Bruker AXS SMART CCD diffractometer using $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation and ω-scans. Data were corrected for Lorentz and polarisation effects and for absorption using empirical procedures [53,54]. Crystallographic data and refinement details are summarised in Table 4. The structures were solved using heavy-atom methods [55] and refined by a full-matrix
least-squares procedure based on F^{2} [56]. All non-H atoms were generally refined with anisotropic displacement parameters (with some exceptions as discussed below) and H atoms were included in the models in their calculated positions in the riding model approximation. The refinements converged after the inclusion of a weighting scheme of the form $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+a P^{2}+b P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$. The structure of 29 a was found to crystallise in the non-centrosymmetric space group Pna 2_{1}. Final refinement confirmed the choice of space group as the centrosymmetric mate, Pnma, would require the molecule to possess a mirror plane or be disposed about a centre of inversion. However, the overall structure is close to centrosymmetric and some difficulties were noted in the refinement. In particular, the $\mathrm{C}(12)$ atom was modelled isotropically. Further, a rather large residual electron density peak of 2.46 e \AA^{-3} was located in a chemically non-sensible position. The absolute structure was determined on the basis of the value of Flack parameter [57] of $0.15(9)$. The $C(8)-$ $\mathrm{C}(12)$ atoms of a cyclohexyl ring in $\mathbf{5 a}$ were found to be disordered over two positions. The two conformations were assigned equal weight based on the refinement. Similarly, disorder was resolved for the $C(46)$ and $\mathrm{C}(48)$ atoms of a cyclohexyl group in 36 . These were assigned site occupancies of 0.55:0.45 from the refinement. The relatively large residual electron density peak in 36 is located $0.86 \AA$ from the $\operatorname{Sn}(1)$ atom. Final refinement details are given in Table 4 and the crystallographic numbering schemes are shown in Figs. 2-5

Table 4
Crystallographic data and refinement details for compounds 29a, 20a, 5a and 36

	29a	20a	5a	36
Formula	$\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{O}_{10} \mathrm{Sn}_{4}$	$\mathrm{C}_{24} \mathrm{H}_{56} \mathrm{Br}_{4} \mathrm{O}_{2} \mathrm{Sn}_{4}$	$\mathrm{C}_{50} \mathrm{H}_{90} \mathrm{Cl}_{6} \mathrm{~F}_{4} \mathrm{O}_{2} \mathrm{Sn}_{4}$	$\mathrm{C}_{48} \mathrm{H}_{88} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{Sn}_{4}$
Formula weight	863.2	1171.1	1486.7	1280.8
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Triclinic
Space group	Pna 2_{1}	$P 2{ }_{1} / n$	C2/c	$P \overline{1}$
$a(\AA)$	16.261(3)	9.396 (5)	23.091(4)	11.9959(6)
$b(\AA)$	7.706(4)	18.339(8)	14.263(4)	12.1875(6)
$c(\AA)$	21.583(5)	11.127(9)	20.086(5)	19.4730(9)
$\alpha\left({ }^{\circ}\right)$	90	90	90	74.018(1)
$\beta\left({ }^{\circ}\right)$	90	98.72(1)	112.93(1)	88.875(1)
$\gamma\left({ }^{\circ}\right)$	90	90	90	76.026(1)
$V\left(\AA^{3}\right)$	2704(1)	1895(2)	6093(2)	2652.6(2)
Z	4	2	4	2
$D_{\text {calc }}\left(\mathrm{cm}^{-3}\right)$	2.120	2.052	1.621	1.604
$\mu\left(\mathrm{cm}^{-1}\right)$	36.93	68.53	19.30	20.03
$F(000)$	1648	1112	2976	1288
Crystal size (mm)	$0.16 \times 0.24 \times 0.32$	$0.11 \times 0.16 \times 0.32$	$0.32 \times 0.32 \times 0.40$	$0.04 \times 0.07 \times 0.16$
Unique data	3243	4346	7000	15106
Data with $I \geq 2 \sigma(I)$	2831	2747	4468	9534
$R\left(F^{2}\right)$ for observed data	0.034	0.028	0.039	0.055
$w R\left(F^{2}\right)$ for all data	0.114	0.076	0.154	0.146
a	0.0545	0.0111	0.0789	0.0682
b	19.3613	1.3859	33.3785	0
$\rho\left(\mathrm{e} \AA^{-3}\right)$	2.46	0.62	0.92	1.62

which were drawn with ORTEPII [58] at the 50% probability level in each case. Data manipulation was conducted with the TEXSAN suite of programs [59].

4. Supplementary material

Crystallographic data for 29a, 20a, 5a and 36 have been deposited at the Cambridge Crystallographic Data Centre with deposition numbers 185148-185151, respectively. Copies of the information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223336033; e-mail: deposit@ccdc.cam.ac.uk or www. http://www.ccdc.cam.ac.uk).

Acknowledgements

We wish to thank the Australian Research Council for support of this work.

References

[1] R. Okawara, D.G. White, K. Fujitani, H. Sato, J. Am. Chem. Soc. 83 (1961) 1342.
[2] R. Okawara, Proc. Chem. Soc. (1961) 383.
[3] R. Okawara, M. Wada, J. Organomet. Chem. 1 (1963) 81.
[4] D.L. Alleston, A.G. Davies, M. Hancock, R.F.M. White, J. Chem. Soc. (1963) 5469.
[5] D.L. Alleston, A.G. Davies, M. Hancock, J. Chem. Soc. (1964) 5744.
[6] W.J. Considine, G.A. Baum, R.C. Jones, J. Organomet. Chem. 3 (1965) 308.
[7] K. Yasuda, H. Matsumoto, R. Okawara, J. Organomet. Chem. 6 (1966) 528.
[8] M. Wada, R. Okawara, J. Organomet. Chem. 8 (1967) 261.
[9] Y. Maeda, R. Okawara, J. Organomet. Chem. 10 (1967) 247.
[10] O.R. Floeck, M. Dräger, Organometallics 12 (1993) 4623.
[11] J. Otera, H. Nozak, Tetrahedron Lett. 27 (1986) 5743.
[12] J. Otera, T. Yano, Y. Himeno, H. Nozaki, Tetrahedron Lett. 27 (1986) 4501.
[13] J. Otera, T. Yano, A. Kawabata, H. Nozaki, Tetrahedron Lett. 27 (1986) 2383.
[14] J. Otera, S. Ioka, H. Nozaki, J. Org. Chem. 54 (1989) 4013.
[15] J. Otera, N. Danoh, H. Nozaki, J. Org. Chem. 56 (1991) 5307.
[16] J. Otera, N. Dan-Oh, H. Nozaki, J. Chem. Soc. Chem. Commun. (1991) 1742.
[17] J. Otera, N. Danoh, H. Nozaki, Tetrahedron 48 (1992) 1449.
[18] J. Otera, Chem. Rev. 93 (1993) 1449.
[19] S. Roelens, J. Org. Chem. 61 (1996) 5257.
[20] A. Morcuende, M. Ors, S. Valverde, B. Herradon, J. Org. Chem. 61 (1996) 5264.
[21] J. Otera, K. Kawada, T. Yano, Chem. Lett. (1996) 225.
[22] A. Orita, A. Mitsutome, J. Otera, J. Org. Chem. 63 (1998) 2420.
[23] A. Orita, K. Sakamoto, Y. Hamada, A. Mitsutome, J. Otera, Tetrahedron 55 (1999) 2899.
[24] Y. Hori, T. Hagiwara, Int. J. Biol. Macromol. 25 (1999) 237.
[25] J. Xiang, S. Toyoshima, A. Orita, J. Otera, Angew. Chem. Int. Ed. Engl. 40 (2001) 3670.
[26] J.D. Murray, C.K. Chu, J. Chem. Soc. A. (1971) 360.
[27] P.G. Harrison, M.J. Begley, K.C. Molloy, J. Organomet. Chem. 186 (1980) 213.
[28] H. Puff, E. Friedrichs, F. Visel, Z. Anorg. Allg. Chem. 477 (1981) 50.
[29] H. Puff, I. Bung, E. Friedrichs, A. Jansen, J. Organomet. Chem. 254 (1983) 23.
[30] J.F. Vollano, R.O. Day, R.R. Holmes, Organometallics 3 (1984) 745.
[31] R. Hämäläinen, U. Turpeinen, J. Organomet. Chem. 333 (1987) 323.
[32] H. Reuter, R. Pawlak, Acta Crystallogr. Sect. C 56 (2000) 804.
[33] A.G. Davies, P.G. Harrison, P.R. Palan, J. Chem. Soc. C (1970) 2030.
[34] D. Dakternieks, K. Jurkschat, S. van Dreumel, E.R.T. Tiekink, Inorg. Chem. 36 (1997) 2023.
[35] J. Beckmann, M. Biesemans, K. Hassler, K. Jurkschat, J.C. Martins, M. Schurmann, R. Willem, Inorg. Chem. 37 (1998) 4891.
[36] K.C. Pande, J. Organomet. Chem. 13 (1968) 187.
[37] V.K. Jain, V.B. Mokal, P. Sandor, Magn. Reson. Chem. 30 (1992) 1158.
[38] I.A. Ahmed, G. Kastner, H. Reuter, D. Schultze, J. Organomet. Chem. 649 (2002) 147.
[39] D. Tudela, J. Organomet. Chem. 471 (1994) 63.
[40] D. Dakternieks, K. Jurkschat, E.R.T. Tiekink, Main Group Met. Chem. 17 (1994) 471.
[41] R.K. Ingham, S.D. Rosenberg, H. Gilman, Chem. Rev. 60 (1960) 459.
[42] T. Yano, K. Nakashima, J. Otera, R. Okawara, Organometallics 4 (1985) 1501.
[43] D.C. Gross, Inorg. Chem. 28 (1989) 2355.
[44] R.K. Harris, A. Sebald, D. Furlani, G. Tagliavini, Organometallics 7 (1988) 388.
[45] D. Dakternieks, F.S. Kuan, E.R.T. Tiekink, Main Group Met. Chem. 24 (2001) 291.
[46] D.L. Tierney, P.J. Moehs, D.L. Hasha, J. Organomet. Chem. 620 (2001) 211.
[47] D.L. Hasha, J. Organomet. Chem. 620 (2001) 296.
[48] J. Beckmann, M. Henn, K. Jurkschat, M. Schürmann, D. Dakternieks, A. Duthie, Organometallics 21 (2002) 192.
[49] T.P. Lockhart, W.F. Manders, E.M. Holt, J. Am. Chem. Soc. 108 (1986) 6611.
[50] E.R.T. Tiekink, Appl. Organomet. Chem. 5 (1991) 1.
[51] E.R.T. Tiekink, Trends Organomet. Chem. 1 (1994) 71.
[52] I.A. Ahmed, H. Reuter, G. Kastner, Z. Kristallogr. 217 (2002) 107.
[53] N. Walker, D. Stuart, Acta Crystallogr. Sect. A 39 (1983) 158.
[54] sadabs (Version 2.01), Bruker AXS Inc, Madison, WI, 2000.
[55] P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, S. García-Granda, J.M.M. Smits, C. Smykalla, The dirdif program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1994.
[56] G.M. Sheldrick, SHELX-97. Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
[57] H.D. Flack, Acta Crystallogr. Sect. A 39 (1983) 876.
[58] C.K. Johnson, ortep-II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
[59] Texsan, Structure Analysis Package, Molecular Structure Corporation, Woodlands, TX, 1992.

[^0]: * Corresponding authors. Present address: Department of Chemistry, National University of Singapore, Singapore 117543, Singapore (E.R.T.T.). E-mail sddress: chtert@nus.edu.sg

 E-mail address: dainis@mail.deakin.edu.au (D. Dakternieks).

[^1]: ${ }^{\text {a }}$ Poor yield (see text).
 ${ }^{\mathrm{b}}$ The ${ }^{119} \mathrm{Sn}-\mathrm{NMR}$ shows ten signals between the range of -82.0 and -140.7 ppm .
 ${ }^{\text {c }}$ Twelve signals between the range of -140.0 and -190.0 ppm .
 ${ }^{\mathrm{d}}$ Seventeen signals between the range of -15.0 and -25.5 ppm .
 ${ }^{e}$ Poor yield (see text).
 ${ }^{\mathrm{f}}$ Twelve signals between the range of -131.5 and -153.5 ppm .
 ${ }^{\mathrm{g}}$ An additional signal at 89.8 ppm .
 ${ }^{h}$ An additional signal at 92.4 ppm
 ${ }^{\text {i }}$ Seven signals between the range of -31.9 and -176.5 ppm .
 ${ }^{\mathrm{j}}$ Isolated as water adduct [45].

[^2]: Symmetry operation i: $-x,-y,-z ; 1 / 2-x, 1 / 2-y, 1-z ;-x, 1-y,-z ;-x,-y,-1-z$.
 ${ }^{\mathrm{a}} \mathrm{X}=\mathrm{Br} ; \mathrm{Y}=\operatorname{Br}(2) ; a=4 ; b=7 ; c=10$.
 ${ }^{\mathrm{b}} \mathrm{X}=\mathrm{F} ; \mathrm{Y}=\mathrm{F}(2) ; a=7 ; b=13 ; c=19$.
 ${ }^{\mathrm{c}} \mathrm{X}=\mathrm{F} ; \mathrm{Y}=\mathrm{Cl}(1) ; a=7 ; b=13 ; c=19$.

